Интересуетесь математикой? Не знаете, как высчитать площадь треугольника? Мы подготовили для вас статью с подробным объяснением формулы и примерами расчета. Теперь вы сможете легко и быстро найти площадь треугольника безо всяких проблем. Читайте нашу статью и узнайте, как это сделать!

Основные понятия

Треугольник — это геометрическая фигура, которая получилась из трех отрезков. Их соединили тремя точками, не лежащими на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.

Площадь — это численная характеристика, которая дает нам информацию о размере части плоскости, ограниченной замкнутой геометрической фигурой.

Популярные единицы измерения площади:

  • квадратный миллиметр (мм2);

  • квадратный сантиметр (см2);

  • квадратный дециметр (дм2);

  • квадратный метр (м2);

  • квадратный километр (км2);

  • гектар (га).

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Реши домашку по математике на 5.

Подробные решения помогут разобраться в самой сложной теме.

Реши домашку по математике на 5.

Формула площади треугольника

Для решения задач применяются различные формулы, в зависимости от известных исходных данных. Далее мы рассмотрим способы решения для всех типов треугольников, в том числе частные случаи для равносторонних, равнобедренных и прямоугольных фигур.

Быстро вычислить площадь треугольника поможет наш онлайн-калькулятор. Просто введите известные вам значения и получите ответ в метрах, сантиметрах или миллиметрах.

Пройдите тест и узнайте, какие темы отделяют от пятёрки по математике

Формулы площади для любого треугольника

1. Площадь треугольника через основание и высоту

, где

— основание,

— высота.

треугольник с отмеченной высотой

2. Площадь треугольника через две стороны и угол между ними.

, где

,

— стороны,

— угол между ними.

треугольник с углом в основании

3. Площадь треугольника через описанную окружность и стороны

, где

,

,

— стороны,

— радиус описанной окружности.

радиус описанной окружности

4. Площадь треугольника через вписанную окружность и стороны.

, где

,

,

— стороны,

— радиус вписанной окружности.

 радиус вписанной окружности

, где

— полупериметр.

5. Площадь треугольника по стороне и двум прилежащим углам

, где

— сторона,

и

— прилежащие углы.

треугольник с двумя отмеченными углами

6. Формула Герона для вычисления площади треугольника

Сначала необходимо подсчитать разность полупериметра и каждой его стороны. Потом найти произведение полученных чисел, умножить результат на полупериметр и найти корень из полученного числа.

, где

,

,

— стороны,

— полупериметр, который можно найти по формуле:

треугольник со сторонами a, b, c

Для прямоугольного треугольника

Для прямоугольного треугольника чаще всего используют одну формулу — половину произведения катетов. Потому что их всегда можно найти с помощью правил тригонометрии или теоремы Пифагора.

, где

,

— стороны.

треугольник с углом 90°

Площадь треугольника по гипотенузе и острому углу

, где

— гипотенуза,

— любой из прилегающих острых углов.

Площадь треугольника по гипотенузе и острому углу

Гипотенузой принято называть сторону, которая лежит напротив прямого угла.

Площадь прямоугольного треугольника по катету и прилежащему углу

, где

— катет,

— прилежащий угол.

Площадь прямоугольного треугольника по катету и прилежащему углу

Катетом принято называть одну из двух сторон, образующих прямой угол.

Площадь треугольника через гипотенузу и радиус вписанной окружности

, где

— гипотенуза,

— радиус вписанной окружности.

радиус вписанной окружности в треугольник

Площадь треугольника по отрезкам, на которые делит вписанная окружность его гипотенузу

, где

,

— части гипотенузы.

Площадь треугольника вписанного в окружность

Площадь прямоугольного треугольника по формуле Герона

, где

,

— катеты,

— полупериметр, который можно найти по формуле:

Площадь прямого треугольника по формуле Герона

Для равнобедренного треугольника

Ниже мы покажем разные формулы для площади равнобедренного и равностороннего треугольника, их редко используют, но их легко вывести самому. Попробуйте сделать это самостоятельно.

Вычисление площади через основание и высоту

, где

— основание,

— высота, проведенная к основанию.

площадь через основание и высоту

Поиск площади через боковые стороны и угол между ними.

, где

— боковая сторона,

— угол между боковыми сторонами.

площадь через боковые стороны и угол между ними

Площадь равностороннего треугольника через радиус описанной окружности

, где

— радиус описанной окружности.

радиус описанной окружности равностороннего треугольника

Площадь равностороннего треугольника через радиус вписанной окружности

, где

— радиус вписанной окружности.

радиус вписанной окружности равностороннего треугольника

Площадь равностороннего треугольника через сторону

, где

— сторона.

Площадь равностороннего треугольника через сторону

Площадь равностороннего треугольника через высоту

, где

— высота.

Площадь равностороннего треугольника через высоту

Таблица формул нахождения площади треугольника

В задачах встречаются разные фигуры, и кажется, что нужны разные формулы. Но на самом деле, зная всего несколько формул для треугольника и пользуясь теоремами и свойствами геометрии, можно найти площадь любой фигуры.

таблица формул для определения площади треугольника

Скачать таблицу

Но что делать, если нужно решить контрольную по математике или геометрии быстро, а вы плохо знаете конкретную тему? Закажите контрольную по математике онлайн у специалистов, которые помогут быстро выполнить задание и пояснят решение.

Как высчитать квадратный метр фундамента?


Чтобы высчитать площадь квадратного метра фундамента, нужно выполнить следующие действия:

  1. Измерьте длину и ширину фундамента в метрах с помощью ленты измерительной или другого инструмента.

  2. Умножьте длину и ширину фундамента вместе, чтобы получить общую площадь в квадратных метрах. Формула для вычисления площади: Площадь = Длина x Ширина.

  3. Если фундамент имеет несколько уровней или имеет нетрадиционную форму, то его площадь можно вычислить путем разбиения его на более простые геометрические фигуры (например, на прямоугольники, треугольники и т.д.) и вычисления площади каждой из них. Затем сложите все площади, чтобы получить общую площадь фундамента в квадратных метрах.

  4. Когда вы знаете площадь фундамента в квадратных метрах, вы можете использовать эту информацию для определения необходимого количества строительных материалов, таких как бетон, кирпичи, блоки и т.д.

Categories:

Comments are closed